

Recommendations for Future IR SSEC High Spectral Resolution Observations

-Hank Revercomb, SSEC Director

University of Wisconsin - Madison ce Science and Engineering Center (SSEC)

NASA Sounder Science Team Meeting Marriott Greenbelt 2 October 2014

Recent Developments Aiding Hyperspectral Observations

Largely Extracted from this talk ig Center (SSEC

NOAA NASA EUMETSAT Satellite Hyperspectral Sensor Workshop Miami, FL, 29-31 March 2011

H-S Operational Technology Topics

- **A.** General Perspective
- **B. Future LEO: Advanced CrIS for JPSS-Next**
- C. Advanced GEO Wx Sounder & Trace Gas Imaging FTS

 (a la GIFTS/HES/GEO-CAPE, MTG/IRS, FY4)
- D. IR Climate Benchmark (a la CLARREO)

A. General Perspective (1)

Question 4:

- State of hyperspectral sensor technology for satellite applications (LEO, GEO orbits)?
 - Mature, relatively low risk (with some imaging FTS refinements needing careful demonstration)
- > Is there a role for GHG measurements in GEO?
 - ➤ A key role— UW Geo Atmospheric Profiler (GAP) even identified as GEO component of original EOS concept
- Many questions about *Minimal* system for GEO
 - With the right program model, GEO systems are affordable and the benefit-to-cost ratio is large (Minimal as defined for HES instrument or products would sacrifice performance by not really save much)

A. General Perspective (2)

Common Operational Requirements:

- Spectral Resolution Exceeding ~1 cm⁻¹
 - Vertical resolution, Separation of contributions from different gases, Atmospheric spectral calibration
- Broad-Band Spectral Coverage
 - Needed to capture information content (overall S/N)
- Spectral Stability/Knowledge ~1 ppm
 - Even small shifts at moderate resolution create significant effective radiance errors
- Spectral Consistency
 - ➤ It should be possible to put spectra from different instruments on a common scale (requires Nyquist spectral sampling)-avoids subtle differences from spectral property differences and allows product combining and common processing

A. General Perspective (3)

Comments on Organizational Structure:

- NASA and NOAA need to be close partners
 - ➤ Technologies for new operational systems should be proven by NASA in response to NOAA needs.
- NRC Decadal Survey should cover future Operational needs as thoroughly as new Science Missions
 - Satisfying NOAA operational needs should be a NASA priority
 - Flaw in 2007 DS implementation, exacerbated by unfortunate timing of operational plan changes (e.g. GIFTS)
- New procurement strategies for operational systems seem to be needed to constrain costs
 - Need a process that incentivizes timely development and implementation of new systems
 - Example is commercial data sale approach where Mission investors want return as soon as possible and products need to be good to succeed (Dave Crain, Q 15 Talk 12)

B. Future LEO: Advanced CrlS for JPSS-Next

Supporting new operational Goals beyond JPSS

- Higher spatial resolution and near-contiguous foot prints
 - Improved T & WV fields from better cloud avoidance
 - Better surface & near-surface T, WV by resolving unique surface properties
- Multiple along-track angle viewing
 - Measure water vapor fluxes from motion of distributions (Bill Smith's notion for GIFTS)
 - Improved height definition from stereo clouds and WV
- Improved spectral coverage/resolution (CrIS)
 - Additional trace gas information
- On-orbit calibration verification a la CLARREO
 - Enhanced climate change role

Current CrIS Instrument

HIRS (20 ch): 30⁺ year history

CrIS (1307 ch): NPP/JPSS

Volume: $< 71 \times 80 \times 95 \text{ cm}$

Mass: < 152 kg Power: < 124 W

Data Rate: <1.5 Mbps

Spectral Coverage of Advanced CrIS Compared to IASI, CrIS, AIRS, S-HIS & NAST-I

Instrument Overview

Interferometer Design - Exploded View

CrlS Utilizes Innovative Technologies to Achieve High Performance

CrlS Sensor Features

Large 8 cm Clear Aperture

Three Spectral Bands

- SWIR: 2155-2550 cm⁻¹/_{Spectral} and spatial in 1305 Total Spectral CL Spec

1305 Total Spectral Channels

- 3x3 FOVs at 14 km Diameter
- Photovoltaic Detectors in All 3 Bands
- 4-Stage Passive Detector Cooler
- Plane-Mirror Interferometer With DA
- (Neon • Internal Laser Wavelength Calibration bulb
- Deep-Cavity Internal Calibration Target
- Extended Radiator Supports 1394a
- Passive Vibration Isolation System Allows Robust Operation in 50 mG Environment
- Modular Construction

Volume: < 71 x 80 x 95 cm

Mass: < 152 kg Power: < 124 W

Data Rate: <1.5 Mbps

vibration isolation mount

CrIS Subsystems (EDU3 shown)

Modify to improve spatial resolution and spatial sampling

B. Future LEO Summary

The CrIS sensor provides a foundation that is well suited to the upgrades needed for NOAA's next generation Weather, GHG monitoring, & Climate Monitoring

C. Advanced GEO Wx Sounder & Trace Gas Imaging FTS (a la GIFTS/HES/GEO-CAPE)

New Sensor needed to meet US Operational Goals

- Higher spatial, spectral, and temporal resolution
 - Factor of 100 more space time-detail (x 2.5, y 2.5, z 3, t 5.5) in T & WV distributions
 - Hours advanced warning of serious severe storms
- Spectral resolution for Green House Gas monitoring
 - > GHG transport information from time domain
 - > GHG sensitivity increase from variable Tsurface

Spectral Coverage of GIFTS/IRS/HES

Compared to IASI, CrIS, AIRS, S-HIS & NAST-I

Operational Weather Satellites

GOES Sounder

= 1/4 Wx Sat. role

= ½ Severe Wx Sat. role

&
can do
trace gas too!

GEO IR Imaging Sounder capability is unique

- Polar Sounders:
 Inadequate temporal coverage
- GPS: Inadequate spatial resolution and temporal coverage
- Current GEO Sounder:
 Vertical resolution 2-3 times lower
- ABI Imager: Inadequate vertical resolution
- GEO Microwave:
 Vertical & horizontal resolution 2-3 times lower

- ◆ GIFTS Proof of Concept was successfully demonstrated in 2006 with the Engineering Development Unit Thermal/Vacuum & Sky Viewing Tests (expected long-poles are working well: LW detector with good sensitivity and operability, Long-lived stable laser, mechanical cooler and cryogenic thermal design, imaging FTS radiometric integrity, plus many others)
- ◆ Results Demonstrate that NOAA Requirements for a Successful GOES Imaging Spectrometer are achievable with a GIFTS Flight Model (spatial coverage and resolution, spectral coverage, spectral calibration and Instrument line shape knowledge, and spectral scale standardization)

- Privately owned commercial data provider leveraging GIFTS/HES technology development
- Licensed for hyperspectral data collection under the Remote Sensing Act of 2003 (NASA & NOAA cannot compete)
- Will restore critical data for severe weather forecasting cancelled from GOES-R at a fraction of the cost, in record time!
- ◆ This endeavor could become a really new way of doing business for environmental satellite data

Artist Impression, Phase A

EUMETSAT/ESA plan for advanced IR Sounder (IRS) to fly on Meteosat 3rd Generation (MTG) in 2018

China has an Advanced Sounder Program too! Next Generation of GEO satellite FY-4

Interferometric Infrared Sounder

Multiple Channel Scanning Imager

Lightning Mapper

Solar X-EUV imaging telescope

(not available on 1st satellite)

No.	Plan Launch	Design Life	Status
FY-4A	2014	5 years	R&D
FY-4B	2017	7 years	Ор.
FY-4C	2019	7 years	Ор.

Prototype structure of FY-4A

C. Advanced GEO Wx Sounder & Trace Gas Imaging FTS Summary 55

Technology is not limiting US progress toward this extremely valuable asset

NOAA needs to prioritize meeting this need in the GOES-R time frame

D. IR Climate Benchmark (a la CLARREO)

A New Hyperspectral Climate Benchmark Mission is needed to provide:

- Unbiased spatial and temporal sampling
 - 90 degree, true polar orbit
 - Multiple, spaced orbits for seasonal coverage
- Broad, contiguous spectral coverage, including Far IR
 - High Information Content, not calorimetry
 - Intercalibration to tie POES and GEO to consistent standard
- On-orbit Verification and Testing
 - Unequivocal calibration to 0.1 K 3-sigma

Earth Radiation Budget, the old way

13 Oct 1959-Feb 1960 Explorer 7

The 1st meteorological satellite instrument to observe the Earth

- Radiometer designed byVerner Suomi & Robert Parent
- Omni-directional spheres
- > 3-color (black, white, gold)

Spectrally integrated obs continue today

NASA just in its 2nd year

Introduction to CLARREO and ARI

- CLARREO (Climate Absolute Radiance & Refractivity Observatory)
 a 2007 Decadal Survey Tier 1 mission
 - IR & Reflected Solar spectra coupled with GPS occultation data offer unprecedented accuracy to provide much higher climate change sensitivity than existing climate records (from total integrated IR & Solar data)
 - Metrology lab on-orbit serves as "NIST in orbit"
- CLARREO to Benchmark the Earth's climate
 - Analogous to marking a glacier's current extent
- CLARREO to be an Inter-calibration Standard
 - GSICS (Global Space-based Inter-Cal System)
 - e.g. Greatly enhancing the value of the climate record from high spectral resolution IR sounders starting in 2002 (AIRS, IASI, CrIS)
- Absolute Radiance Interferometer (ARI)
 is an IR prototype instrument with new
 on-orbit verification technology ready for
 CLARREO or a pathfinder mission

ARI for CLARREO Pathfinder Mission

 Vacuum Testing of CLARREO Flight Prototype Absolute Radiance Interferometer (ARI)

has demonstrated 0.1 K 3-sigma performance of the

(1) Calibrated FTS (CFTS) and

(2) On-orbit Verification and Test System (OVTS),

bringing the full ARI system to TRL 6

 The next step should leverage NASA ESTO's investment with a spaceborne

demonstration as a **CLARREO IR pathfinder.** Flight on the International **Space Station (ISS)**

is being considered.

Absolute Radiance Interferometer (ARI) Prototype

with a short upgrade path to flight

ABB Bomem Interferometer Modulator "Wishbone"

Aft Optics 1/ Pyro-detector Aft optics 2 (MCT/InSb)

Sterling Cooler Compressor

Calibrated FTS

- Corner-cube interferometer used in 4-port to avoid double pass; Strong flight heritage
 - 0.5 cm⁻¹ resolution (±1 cm OPD)
 - 1.55 µm diode laser for interferogram sample control & fringe counting
 - 10 cm Csl single-substrate beamsplitter
- Fore optics designed to
 - minimize polarization effects
 - minimize sizes of calibration/ verification BBs & reflectivity sources
 - minimize stray light by providing effective field and aperture stops
 - maximize energy throughput
- 3-50 µm Spectral Coverage
 - Highly linear pyroelectric detector, all reflective aft optics: 10-50 μm
 - Cryo-cooler for MCT & InSb semiconductor detectors: 3-18 µm

Absolute Radiance Interferometer (ARI) Prototype with a short upgrade path to flight

On-orbit Verification and Test System (OVTS) Technologies

- On-orbit Absolute Radiance
 Standard (OARS) cavity blackbody
 using three miniature phase change
 cells to establish the temperature scale
 from -40, to +30 C to better than 10 mK
- On-orbit Cavity Emissivity

 Module (OCEM) using Heated Halo source allowing the FTS to measure the broadband spectral emissivity of the OARS to better than 0.001
- 3 OCEM-QCL* using a Quantum Cascade Laser source to monitor changes in the mono-chromatic cavity emissivity of the OARS & Cal BB to better than 0.001
- On-orbit Spectral Response Module* (OSRM) QCL used to measure the FTS instrument line shape

OVTS Sources

Calibrated FTS Blackbodies (HBB & ABB)

All components at flight scale

* QCL functions demonstrated separately

On-Orbit Verification and Test System

OVTS Provides On-Orbit, End-to-End Calibration Verification & Testing Traceable to Recognized SI Standards

On-orbit Absolute Radiance Standard OARS

Assembly Diagram

Heated Halo & Halo Insulator

Cavity

Inner Shield & Isolator

Temperature Scale Established to < 10 mK on-orbit

Heated Halo Concept

Radiance emitted from BB

Background Radiance Reflected from BB

$$\langle 1 - \varepsilon_{\tilde{v}}(t) \rangle_{t} = \left\langle \frac{R_{\text{scene}}(t) - B[T_{\text{BB}}(t)]}{R_{\text{background}}(t) - B[T_{\text{BB}}(t)]} \right\rangle_{t}$$

Blackbody Emissivity Measured to < 0.001 on-orbit

3- σ emissivity of 0.0006 uncertainty indicated by dashed lines applied to model

Good agreement with NIST measurements

Far IR tests with Graphene in Z306 are in progress

Brightness Temperature Accuracy Verified to < 0.1 K

(CFTS calibrated - OARS verification)

MCT

Spectral Averaging Bin Width is 5 cm⁻¹

Brightness Temperature Accuracy Verified to < 0.1 K

(CFTS calibrated - OARS verification)

DTGS

Pathfinder Mission Offers Valuable On-orbit Standard

- **ARI not-to-exceed Uncertainty** provides better "truth"
- **Residual from CrIS for:**

AIRS IASI

VIIRS: M13, M15, M16

ARI Accuracy Offers Substantially Reduced Time to Detect Global Climate Change

Achieving Climate Change Absolute Accuracy in Orbit,

Example with ~ factor of 2 shorter Time to Detect

Wielicki et al., BAMS, 2013

Summary of ARI Status

- CLARREO: Efforts of the NASA Science Definition Team have documented <u>compelling science and societal benefits</u> from Benchmarking the Climate State and Inter-calibrating other Satellite Sensors (Wielicki, et al., 2013)
- CLARREO IR Flight Prototype, ARI: Recent UW Vacuum Testing combined with prior UW/Harvard IIP technology developments and test results demonstrate <u>capability to</u> <u>meet CLARREO mission performance requirements</u>
- ARI Technical Readiness: NASA Earth Science Technology Office (ESTO) has assigned a Technical Readiness Level of 6 supporting readiness for a flight mission
- International Space station: ISS offers an attractive and economical avenue to a <u>CLARREO pathfinder mission</u>, especially given the recent ISS lifetime extension until 2024
- CLARREO pathfinder on ISS: Would provide economical risk reduction for the full CLARREO mission and a chance to improve the overall accuracy of operational environmental satellite capabilities and leverage them to start a global benchmark record

D. IR Climate Benchmark Summary (a la CLARREO) SSEC

Climate Benchmark Missions are now technologically viable and need to be included in operational requirements for the foreseeable future